1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Let $$f(x)$$ be a non - negative continuous function such that the area bounded by the curve $$y=f(x),$$ $$x$$-axis and the ordinates $$x = {\pi \over 4}$$ and $$x = \beta > {\pi \over 4}$$ is $$\left( {\beta \sin \beta + {\pi \over 4}\cos \beta + \sqrt 2 \beta } \right).$$ Then $$f\left( {{\pi \over 2}} \right)$$ is
A
$$\left( {{\pi \over 4} + \sqrt 2 - 1} \right)$$
B
$$\left( {{\pi \over 4} - \sqrt 2 + 1} \right)$$
C
$$\left( {1 - {\pi \over 4} - \sqrt 2 } \right)$$
D
$$\left( {1 - {\pi \over 4} + \sqrt 2 } \right)$$
2
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
If $${\cos ^{ - 1}}x - {\cos ^{ - 1}}{y \over 2} = \alpha ,$$ then $$4{x^2} - 4xy\cos \alpha + {y^2}$$ is equal to :
A
$$2\sin 2\alpha $$
B
$$4$$
C
$$4{\sin ^2}\alpha $$
D
$$-4{\sin ^2}\alpha $$
3
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
The value of integral, $$\int\limits_3^6 {{{\sqrt x } \over {\sqrt {9 - x} + \sqrt x }}} dx $$ is
A
$${1 \over 2}$$
B
$${3 \over 2}$$
C
$$2$$
D
$$1$$
4
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
The differential equation representing the family of curves $${y^2} = 2c\left( {x + \sqrt c } \right),$$ where $$c>0,$$ is a parameter, is of order and degree as follows:
A
order $$1,$$ degree $$2$$
B
order $$1,$$ degree $$1$$
C
order $$1,$$ degree $$3$$
D
order $$2,$$ degree $$2$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12