1
JEE Main 2019 (Online) 12th January Morning Slot
+4
-1
The maximum value of 3cos$$\theta$$ + 5sin $$\left( {\theta - {\pi \over 6}} \right)$$ for any real value of $$\theta$$ is :
A
$$\sqrt {34}$$
B
$$\sqrt {31}$$
C
$$\sqrt {19}$$
D
$${{\sqrt {79} } \over 2}$$
2
JEE Main 2019 (Online) 10th January Evening Slot
+4
-1
The value of $$\cos {\pi \over {{2^2}}}.\cos {\pi \over {{2^3}}}\,.....\cos {\pi \over {{2^{10}}}}.\sin {\pi \over {{2^{10}}}}$$ is -
A
$${1 \over {256}}$$
B
$${1 \over {2}}$$
C
$${1 \over {1024}}$$
D
$${1 \over {512}}$$
3
JEE Main 2019 (Online) 9th January Morning Slot
+4
-1
For any $$\theta \in \left( {{\pi \over 4},{\pi \over 2}} \right)$$, the expression

$$3{(\cos \theta - \sin \theta )^4}$$$$+ 6{(\sin \theta + \cos \theta )^2} + 4{\sin ^6}\theta$$

equals :
A
13 – 4 cos2$$\theta$$ + 6sin2$$\theta$$cos2$$\theta$$
B
13 – 4 cos6$$\theta$$
C
13 – 4 cos2$$\theta$$ + 6cos2$$\theta$$
D
13 – 4 cos4$$\theta$$ + 2sin2$$\theta$$cos2$$\theta$$
4
JEE Main 2017 (Offline)
+4
-1
If $$5\left( {{{\tan }^2}x - {{\cos }^2}x} \right) = 2\cos 2x + 9$$,

then the value of $$\cos 4x$$ is :
A
$${1 \over 3}$$
B
$${2 \over 9}$$
C
$$- {7 \over 9}$$
D
$$- {3 \over 5}$$
EXAM MAP
Medical
NEET