JEE Mains Previous Years Questions with Solutions Android App

Download our App

JEE Mains Previous Years Questions with Solutions

4.5 
Star 1 Star 2 Star 3 Star 4
Star 5
  (100k+ )
1

JEE Main 2014 (Offline)

MCQ (Single Correct Answer)
Let $$fk\left( x \right) = {1 \over k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)$$ where $$x \in R$$ and $$k \ge \,.$$
Then $${f_4}\left( x \right) - {f_6}\left( x \right)\,\,$$ equals
A
$${1 \over 4}$$
B
$${1 \over 12}$$
C
$${1 \over 6}$$
D
$${1 \over 3}$$

Explanation

Let $${f_k}\left( x \right) = {1 \over k}\left( {{{\sin }^k}x + {{\cos }^k}.x} \right)$$

Consider

$${f_4}\left( x \right) - {f_6}\left( x \right) $$

$$=$$ $${1 \over 4}\left( {{{\sin }^4}x + {{\cos }^4}x} \right) - {1 \over 6}\left( {{{\sin }^6}x + {{\cos }^6}x} \right)$$

$$ = {1 \over 4}\left[ {1 - 2{{\sin }^2}x{{\cos }^2}x} \right] - {1 \over 6}\left[ {1 - 3{{\sin }^2}x{{\cos }^2}x} \right]$$

$$ = {1 \over 4} - {1 \over 6} = {1 \over {12}}$$
2

JEE Main 2013 (Offline)

MCQ (Single Correct Answer)
$$ABCD$$ is a trapezium such that $$AB$$ and $$CD$$ are parallel and $$BC \bot CD.$$ If $$\angle ADB = \theta ,\,BC = p$$ and $$CD = q,$$ then AB is equal to:
A
$${{\left( {{p^2} + {q^2}} \right)\sin \theta } \over {p\cos \theta + q\sin \theta }}$$
B
$${{{p^2} + {q^2}\cos \theta } \over {p\cos \theta + q\sin \theta }}$$
C
$${{{p^2} + {q^2}} \over {{p^2}\cos \theta + {q^2}\sin \theta }}$$
D
$${{\left( {{p^2} + {q^2}} \right)\sin \theta } \over {{{\left( {p\cos \theta + q\sin \theta } \right)}^2}}}$$

Explanation



From Sine Rule

$${{AB} \over {\sin \theta }} = {{\sqrt {{p^2} + {q^2}} } \over {\sin \left( {\pi - \left( {\theta + \alpha } \right)} \right)}}$$

$$AB = {{\sqrt {{p^2} + {q^2}} \sin \theta } \over {\sin \theta \cos \alpha + \cos \theta \sin \alpha }}$$

$$ = {{\left( {{p^2} + {q^2}} \right)\sin \theta } \over {q\sin \theta + p\cos \theta }}$$

(As $$\cos \alpha = {q \over {\sqrt {{p^2} + {q^2}} }}$$ and $$\sin \alpha = {p \over {\sqrt {{p^2} + {q^2}} }}$$ )
3

JEE Main 2013 (Offline)

MCQ (Single Correct Answer)
The expression $${{\tan {\rm A}} \over {1 - \cot {\rm A}}} + {{\cot {\rm A}} \over {1 - \tan {\rm A}}}$$ can be written as:
A
$$\sin {\rm A}\,\cos {\rm A} + 1$$
B
$$\,\sec {\rm A}\,\cos ec{\rm A} + 1$$
C
$$\tan {\rm A} + \cot {\rm A}$$
D
$$\sec {\rm A} + \cos ec{\rm A}$$

Explanation

Given expression can be written as

$${{\sin A} \over {\cos A}} \times {{sin\,A} \over {\sin A - \cos A}} + {{\cos A} \over {\sin A}} \times {{\cos A} \over {\cos A - sin\,A}}$$

(As $$\tan A = {{\sin A} \over {\cos A}}$$ and $$\cot A = {{\cos A} \over {\sin A}}$$ )

$$ = {1 \over {\sin A - \cos A}}\left\{ {{{{{\sin }^3}A - {{\cos }^3}A} \over {\cos A\sin A}}} \right\}$$

$$ = {{{{\sin }^2}A + \sin A\cos A + {{\cos }^2}\,A} \over {\sin A\cos A}}$$

$$ = 1 + \sec\, A{\mathop{\rm cosec}\nolimits} \,A$$
4

AIEEE 2012

MCQ (Single Correct Answer)
In a $$\Delta PQR,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} $$ If $$3{\mkern 1mu} \sin {\mkern 1mu} P + 4{\mkern 1mu} \cos {\mkern 1mu} Q = 6$$ and $$4\sin Q + 3\cos P = 1,$$ then the angle R is equal to :
A
$${{5\pi } \over 6}$$
B
$${{\pi } \over 6}$$
C
$${{\pi } \over 4}$$
D
$${{3\pi } \over 4}$$

Explanation

Given $$3$$ $$\sin \,P + 4\cos Q = 6$$ $$\,\,\,\,\,\,\,\,...\left( i \right)$$

$$4\sin Q + 3\cos P = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$

Squaring and adding $$(i)$$ & $$(ii)$$ we get

$$9\,{\sin ^2}P + 16{\cos ^2}Q + 24\sin P\cos Q$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 16\,{\sin ^2}Q + 9{\cos ^2}P + 24\sin Q\cos P$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$ = 36 + 1 = 37$$

$$ \Rightarrow 9\left( {{{\sin }^2}p + {{\cos }^2}P} \right) + 16\left( {{{\sin }^2}Q + {{\cos }^2}q} \right)$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 24\left( {\sin P\cos Q + \cos P\sin Q} \right) = 37$$

$$ \Rightarrow 9 + 16 + 24\sin \left( {P + Q} \right) = 37$$

[ As $${\sin ^2}\theta + {\cos ^2}\theta = 1$$ and

$$\sin A\cos B + \cos A\sin B$$ $$ = \sin \left( {A + B} \right)$$ ]

$$ \Rightarrow \sin \left( {P + Q} \right) = {1 \over 2}$$

$$ \Rightarrow P + Q = {\pi \over 6}$$ or $${{5\pi } \over 6}$$

$$ \Rightarrow R = {{5\pi } \over 6}$$ or $${\pi \over 6}$$

(as $$P + Q + R = \pi $$ )

If $$R = {{5\pi } \over 6}$$ then $$0 < P,Q < {\pi \over 6}$$

$$ \Rightarrow \cos Q < 1$$ and $$\sin P < {1 \over 2}$$

$$ \Rightarrow 3\sin P + 4\cos Q < {{11} \over 2}$$ which is not true.

So $$R = {\pi \over 6}$$

Questions Asked from Trigonometric Functions & Equations

On those following papers in MCQ (Single Correct Answer)
Number in Brackets after Paper Indicates No. of Questions
JEE Main 2021 (Online) 1st September Evening Shift (1)
JEE Main 2021 (Online) 31st August Evening Shift (1)
JEE Main 2021 (Online) 27th August Morning Shift (1)
JEE Main 2021 (Online) 26th August Evening Shift (1)
JEE Main 2021 (Online) 26th August Morning Shift (1)
JEE Main 2021 (Online) 27th July Evening Shift (1)
JEE Main 2021 (Online) 27th July Morning Shift (1)
JEE Main 2021 (Online) 25th July Evening Shift (1)
JEE Main 2021 (Online) 25th July Morning Shift (1)
JEE Main 2021 (Online) 18th March Evening Shift (1)
JEE Main 2021 (Online) 17th March Evening Shift (1)
JEE Main 2021 (Online) 16th March Morning Shift (2)
JEE Main 2021 (Online) 25th February Evening Shift (1)
JEE Main 2021 (Online) 25th February Morning Shift (1)
JEE Main 2021 (Online) 24th February Morning Shift (1)
JEE Main 2020 (Online) 5th September Evening Slot (1)
JEE Main 2020 (Online) 2nd September Evening Slot (1)
JEE Main 2020 (Online) 9th January Evening Slot (1)
JEE Main 2020 (Online) 9th January Morning Slot (1)
JEE Main 2019 (Online) 12th April Evening Slot (2)
JEE Main 2019 (Online) 12th April Morning Slot (2)
JEE Main 2019 (Online) 9th April Evening Slot (1)
JEE Main 2019 (Online) 9th April Morning Slot (2)
JEE Main 2019 (Online) 8th April Morning Slot (1)
JEE Main 2019 (Online) 12th January Morning Slot (1)
JEE Main 2019 (Online) 10th January Evening Slot (1)
JEE Main 2019 (Online) 10th January Morning Slot (1)
JEE Main 2019 (Online) 9th January Evening Slot (1)
JEE Main 2019 (Online) 9th January Morning Slot (1)
JEE Main 2018 (Offline) (2)
JEE Main 2018 (Online) 15th April Evening Slot (1)
JEE Main 2017 (Offline) (2)
JEE Main 2016 (Online) 10th April Morning Slot (1)
JEE Main 2016 (Online) 9th April Morning Slot (2)
JEE Main 2016 (Offline) (1)
JEE Main 2014 (Offline) (1)
JEE Main 2013 (Offline) (2)
AIEEE 2012 (1)
AIEEE 2011 (1)
AIEEE 2010 (1)
AIEEE 2009 (1)
AIEEE 2006 (2)
AIEEE 2004 (3)
AIEEE 2002 (3)

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12