1
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
Let $$f_k\left( x \right) = {1 \over k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)$$ where $$x \in R$$ and $$k \ge \,1.$$
Then $${f_4}\left( x \right) - {f_6}\left( x \right)\,\,$$ equals :
A
$${1 \over 4}$$
B
$${1 \over 12}$$
C
$${1 \over 6}$$
D
$${1 \over 3}$$
2
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
The expression $${{\tan {\rm A}} \over {1 - \cot {\rm A}}} + {{\cot {\rm A}} \over {1 - \tan {\rm A}}}$$ can be written as:
A
$$\sin {\rm A}\,\cos {\rm A} + 1$$
B
$$\,\sec {\rm A}\,\cos ec{\rm A} + 1$$
C
$$\tan {\rm A} + \cot {\rm A}$$
D
$$\sec {\rm A} + \cos ec{\rm A}$$
3
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
If $$A = {\sin ^2}x + {\cos ^4}x,$$ then for all real $$x$$:
A
$${{13} \over {16}} \le A \le 1$$
B
$$1 \le A \le 2$$
C
$${3 \over 4} \le A \le {{13} \over {16}}$$
D
$${{3} \over {4}} \le A \le 1$$
4
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$\cos \left( {\alpha + \beta } \right) = {4 \over 5}$$ and $$\sin \,\,\,\left( {\alpha - \beta } \right) = {5 \over {13}},$$ where $$0 \le \alpha ,\,\beta \le {\pi \over 4}.$$
Then $$tan\,2\alpha $$ =
A
$${56 \over 33}$$
B
$${19 \over 12}$$
C
$${20 \over 7}$$
D
$${25 \over 16}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12