Javascript is required
1
JEE Main 2021 (Online) 16th March Morning Shift
+4
-1
If for x $$\in$$ $$\left( {0,{\pi \over 2}} \right)$$, log10sinx + log10cosx = $$-$$1 and log10(sinx + cosx) = $${1 \over 2}$$(log10 n $$-$$ 1), n > 0, then the value of n is equal to :
A
16
B
9
C
12
D
20
2
JEE Main 2021 (Online) 25th February Evening Shift
+4
-1
If 0 < x, y < $$\pi$$ and cosx + cosy $$-$$ cos(x + y) = $${3 \over 2}$$, then sinx + cosy is equal to :
A
$${{1 + \sqrt 3 } \over 2}$$
B
$${{1 \over 2}}$$
C
$${{\sqrt 3 } \over 2}$$
D
$${{1 - \sqrt 3 } \over 2}$$
3
JEE Main 2021 (Online) 25th February Morning Slot
+4
-1
All possible values of $$\theta$$ $$\in$$ [0, 2$$\pi$$] for which sin 2$$\theta$$ + tan 2$$\theta$$ > 0 lie in :
A
$$\left( {0,{\pi \over 4}} \right) \cup \left( {{\pi \over 2},{{3\pi } \over 4}} \right) \cup \left( {{{3\pi } \over 2},{{11\pi } \over 6}} \right)$$
B
$$\left( {0,{\pi \over 2}} \right) \cup \left( {\pi ,{{3\pi } \over 2}} \right)$$
C
$$\left( {0,{\pi \over 2}} \right) \cup \left( {{\pi \over 2},{{3\pi } \over 4}} \right) \cup \left( {\pi ,{{7\pi } \over 6}} \right)$$
D
$$\left( {0,{\pi \over 4}} \right) \cup \left( {{\pi \over 2},{{3\pi } \over 4}} \right) \cup \left( {\pi ,{{5\pi } \over 4}} \right) \cup \left( {{{3\pi } \over 2},{{7\pi } \over 4}} \right)$$
4
JEE Main 2021 (Online) 24th February Morning Slot
+4
-1 English
Hindi
If $${e^{\left( {{{\cos }^2}x + {{\cos }^4}x + {{\cos }^6}x + ...\infty } \right){{\log }_e}2}}$$ satisfies the equation t2 - 9t + 8 = 0, then the value of
$${{2\sin x} \over {\sin x + \sqrt 3 \cos x}}\left( {0 < x < {\pi \over 2}} \right)$$ is :
A
$$\sqrt 3$$
B
$${3 \over 2}$$
C
2$$\sqrt 3$$
D
$${1 \over 2}$$
Policy