1
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If L = sin2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$ and
M = cos2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$, then :
A
L = $$ - {1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
B
M = $${1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
C
M = $${1 \over {4\sqrt 2 }} + {1 \over 4}\cos {\pi \over 8}$$
D
L = $${1 \over {4\sqrt 2 }} - {1 \over 4}\cos {\pi \over 8}$$
2
JEE Main 2020 (Online) 2nd September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the equation cos4 $$\theta $$ + sin4 $$\theta $$ + $$\lambda $$ = 0 has real solutions for $$\theta $$, then $$\lambda $$ lies in the interval :
A
$$\left[ { - {3 \over 2}, - {5 \over 4}} \right]$$
B
$$\left( { - {1 \over 2}, - {1 \over 4}} \right]$$
C
$$\left( { - {5 \over 4}, - 1} \right]$$
D
$$\left[ { - 1, - {1 \over 2}} \right]$$
3
JEE Main 2020 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$x = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n}{{\tan }^{2n}}\theta } $$ and $$y = \sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\theta } $$

for 0 < $$\theta $$ < $${\pi \over 4}$$, then :
A
x(1 + y) = 1
B
y(1 – x) = 1
C
y(1 + x) = 1
D
x(1 – y) = 1
4
JEE Main 2020 (Online) 9th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of
$${\cos ^3}\left( {{\pi \over 8}} \right)$$$${\cos}\left( {{3\pi \over 8}} \right)$$+$${\sin ^3}\left( {{\pi \over 8}} \right)$$$${\sin}\left( {{3\pi \over 8}} \right)$$
is :
A
$${1 \over {\sqrt 2 }}$$
B
$${1 \over 2}$$
C
$${1 \over 4}$$
D
$${1 \over 2{\sqrt 2 }}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12