1
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\sin x + \sin^2 x = 1$, $x \in \left(0, \frac{\pi}{2}\right)$, then

$(\cos^{12} x + \tan^{12} x) + 3(\cos^{10} x + \tan^{10} x + \cos^8 x + \tan^8 x) + (\cos^6 x + \tan^6 x)$ is equal to:

A
3
B

4

C

2

D

1

2
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\sum\limits_{r=1}^{13}\left\{\frac{1}{\sin \left(\frac{\pi}{4}+(r-1) \frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{r \pi}{6}\right)}\right\}=a \sqrt{3}+b, a, b \in Z$, then $a^2+b^2$ is equal to :
A

10

B

4

C

8

D

2

3
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the range of the function $f(x)=6+16 \cos x \cdot \cos \left(\frac{\pi}{3}-x\right) \cdot \cos \left(\frac{\pi}{3}+x\right) \cdot \sin 3 x \cdot \cos 6 x, x \in \mathbf{R}$ be $[\alpha, \beta]$. Then the distance of the point $(\alpha, \beta)$ from the line $3 x+4 y+12=0$ is :

A
11
B
10
C
8
D
9
4
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $\left(\sin 70^{\circ}\right)\left(\cot 10^{\circ} \cot 70^{\circ}-1\right)$ is

A
0
B
2/3
C
1
D
3/2
JEE Main Subjects
EXAM MAP