1
JEE Main 2022 (Online) 29th July Evening Shift
Numerical
+4
-1 Let $$A B$$ be a chord of length 12 of the circle $$(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$$. If tangents drawn to the circle at points $$A$$ and $$B$$ intersect at the point $$P$$, then five times the distance of point $$P$$ from chord $$A B$$ is equal to __________.

2
JEE Main 2022 (Online) 29th July Evening Shift
Numerical
+4
-1 $$\text { Let } S=\left\{(x, y) \in \mathbb{N} \times \mathbb{N}: 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$$ and $$T=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}:(x-7)^{2}+(y-4)^{2} \leq 36\right\}$$. Then $$n(S \cap T)$$ is equal to __________.

3
JEE Main 2022 (Online) 29th July Morning Shift
Numerical
+4
-1 Let the mirror image of a circle $$c_{1}: x^{2}+y^{2}-2 x-6 y+\alpha=0$$ in line $$y=x+1$$ be $$c_{2}: 5 x^{2}+5 y^{2}+10 g x+10 f y+38=0$$. If $$\mathrm{r}$$ is the radius of circle $$\mathrm{c}_{2}$$, then $$\alpha+6 \mathrm{r}^{2}$$ is equal to ________.

4
JEE Main 2022 (Online) 25th July Evening Shift
Numerical
+4
-1
Out of Syllabus If the circles $${x^2} + {y^2} + 6x + 8y + 16 = 0$$ and $${x^2} + {y^2} + 2\left( {3 - \sqrt 3 } \right)x + 2\left( {4 - \sqrt 6 } \right)y = k + 6\sqrt 3 + 8\sqrt 6$$, $$k > 0$$, touch internally at the point $$P(\alpha ,\beta )$$, then $${\left( {\alpha + \sqrt 3 } \right)^2} + {\left( {\beta + \sqrt 6 } \right)^2}$$ is equal to ________________.

JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination