Let the lines $$y + 2x = \sqrt {11} + 7\sqrt 7 $$ and $$2y + x = 2\sqrt {11} + 6\sqrt 7 $$ be normal to a circle $$C:{(x - h)^2} + {(y - k)^2} = {r^2}$$. If the line $$\sqrt {11} y - 3x = {{5\sqrt {77} } \over 3} + 11$$ is tangent to the circle C, then the value of $${(5h - 8k)^2} + 5{r^2}$$ is equal to __________.
Let a circle C of radius 5 lie below the x-axis. The line L1 : 4x + 3y + 2 = 0 passes through the centre P of the circle C and intersects the line L2 = 3x $$-$$ 4y $$-$$ 11 = 0 at Q. The line L2 touches C at the point Q. Then the distance of P from the line 5x $$-$$ 12y + 51 = 0 is ______________.
A rectangle R with end points of one of its sides as (1, 2) and (3, 6) is inscribed in a circle. If the equation of a diameter of the circle is 2x $$-$$ y + 4 = 0, then the area of R is ____________.
Let the abscissae of the two points P and Q be the roots of $$2{x^2} - rx + p = 0$$ and the ordinates of P and Q be the roots of $${x^2} - sx - q = 0$$. If the equation of the circle described on PQ as diameter is $$2({x^2} + {y^2}) - 11x - 14y - 22 = 0$$, then $$2r + s - 2q + p$$ is equal to __________.