Points P($$-$$3, 2), Q(9, 10) and R($$\alpha,4$$) lie on a circle C and PR as its diameter. The tangents to C at the points Q and R intersect at the point S. If S lies on the line $$2x-ky=1$$, then k is equal to ____________.
Let $$A B$$ be a chord of length 12 of the circle $$(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$$. If tangents drawn to the circle at points $$A$$ and $$B$$ intersect at the point $$P$$, then five times the distance of point $$P$$ from chord $$A B$$ is equal to __________.
$$\text { Let } S=\left\{(x, y) \in \mathbb{N} \times \mathbb{N}: 9(x-3)^{2}+16(y-4)^{2} \leq 144\right\}$$ and $$T=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}:(x-7)^{2}+(y-4)^{2} \leq 36\right\}$$. Then $$n(S \cap T)$$ is equal to __________.
Let the mirror image of a circle $$c_{1}: x^{2}+y^{2}-2 x-6 y+\alpha=0$$ in line $$y=x+1$$ be $$c_{2}: 5 x^{2}+5 y^{2}+10 g x+10 f y+38=0$$. If $$\mathrm{r}$$ is the radius of circle $$\mathrm{c}_{2}$$, then $$\alpha+6 \mathrm{r}^{2}$$ is equal to ________.