A circle passing through the point $$P(\alpha, \beta)$$ in the first quadrant touches the two coordinate axes at the points $$A$$ and $$B$$. The point $$P$$ is above the line $$A B$$. The point $$Q$$ on the line segment $$A B$$ is the foot of perpendicular from $$P$$ on $$A B$$. If $$P Q$$ is equal to 11 units, then the value of $$\alpha \beta$$ is ___________.
A circle with centre (2, 3) and radius 4 intersects the line $$x+y=3$$ at the points P and Q. If the tangents at P and Q intersect at the point $$S(\alpha,\beta)$$, then $$4\alpha-7\beta$$ is equal to ___________.
Points P($$-$$3, 2), Q(9, 10) and R($$\alpha,4$$) lie on a circle C and PR as its diameter. The tangents to C at the points Q and R intersect at the point S. If S lies on the line $$2x-ky=1$$, then k is equal to ____________.