Two circles in the first quadrant of radii $$r_{1}$$ and $$r_{2}$$ touch the coordinate axes. Each of them cuts off an intercept of 2 units with the line $$x+y=2$$. Then $$r_{1}^{2}+r_{2}^{2}-r_{1} r_{2}$$ is equal to ___________.
Consider a circle $$C_{1}: x^{2}+y^{2}-4 x-2 y=\alpha-5$$. Let its mirror image in the line $$y=2 x+1$$ be another circle $$C_{2}: 5 x^{2}+5 y^{2}-10 f x-10 g y+36=0$$. Let $$r$$ be the radius of $$C_{2}$$. Then $$\alpha+r$$ is equal to _________.
Let the point $$(p, p+1)$$ lie inside the region $$E=\left\{(x, y): 3-x \leq y \leq \sqrt{9-x^{2}}, 0 \leq x \leq 3\right\}$$. If the set of all values of $$\mathrm{p}$$ is the interval $$(a, b)$$, then $$b^{2}+b-a^{2}$$ is equal to ___________.
A circle passing through the point $$P(\alpha, \beta)$$ in the first quadrant touches the two coordinate axes at the points $$A$$ and $$B$$. The point $$P$$ is above the line $$A B$$. The point $$Q$$ on the line segment $$A B$$ is the foot of perpendicular from $$P$$ on $$A B$$. If $$P Q$$ is equal to 11 units, then the value of $$\alpha \beta$$ is ___________.