1
JEE Main 2023 (Online) 8th April Morning Shift
Numerical
+4
-1
Change Language

Consider a circle $$C_{1}: x^{2}+y^{2}-4 x-2 y=\alpha-5$$. Let its mirror image in the line $$y=2 x+1$$ be another circle $$C_{2}: 5 x^{2}+5 y^{2}-10 f x-10 g y+36=0$$. Let $$r$$ be the radius of $$C_{2}$$. Then $$\alpha+r$$ is equal to _________.

Your input ____
2
JEE Main 2023 (Online) 6th April Morning Shift
Numerical
+4
-1
Change Language

Let the point $$(p, p+1)$$ lie inside the region $$E=\left\{(x, y): 3-x \leq y \leq \sqrt{9-x^{2}}, 0 \leq x \leq 3\right\}$$. If the set of all values of $$\mathrm{p}$$ is the interval $$(a, b)$$, then $$b^{2}+b-a^{2}$$ is equal to ___________.

Your input ____
3
JEE Main 2023 (Online) 6th April Morning Shift
Numerical
+4
-1
Change Language

A circle passing through the point $$P(\alpha, \beta)$$ in the first quadrant touches the two coordinate axes at the points $$A$$ and $$B$$. The point $$P$$ is above the line $$A B$$. The point $$Q$$ on the line segment $$A B$$ is the foot of perpendicular from $$P$$ on $$A B$$. If $$P Q$$ is equal to 11 units, then the value of $$\alpha \beta$$ is ___________.

Your input ____
4
JEE Main 2023 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language
Let $P\left(a_1, b_1\right)$ and $Q\left(a_2, b_2\right)$ be two distinct points on a circle with center $C(\sqrt{2}, \sqrt{3})$. Let $\mathrm{O}$ be the origin and $\mathrm{OC}$ be perpendicular to both $\mathrm{CP}$ and $\mathrm{CQ}$. If the area of the triangle $\mathrm{OCP}$ is $\frac{\sqrt{35}}{2}$, then $a_1^2+a_2^2+b_1^2+b_2^2$ is equal to :
Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12