An infinitely long wire has uniform linear charge density $\lambda = 2 \text{ nC/m}$. The net flux through a Gaussian cube of side length $\sqrt{3}$ cm, if the wire passes through any two corners of the cube, that are maximally displaced from each other, would be $x \text{ Nm}^2\text{C}^{-1}$, where $x$ is:
[Neglect any edge effects and use $\frac{1}{4\pi \epsilon_0} = 9 \times 10^9$ SI units]
A dipole with two electric charges of 2 µC magnitude each, with separation distance 0.5 µm, is placed between the plates of a capacitor such that its axis is parallel to an electric field established between the plates when a potential difference of 5 V is applied. Separation between the plates is 0.5 mm. If the dipole is rotated by 30° from the axis, it tends to realign in the direction due to a torque. The value of torque is:
Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The outer body of an aircraft is made of metal which protects persons sitting inside from lightning strikes.
Reason (R): The electric field inside the cavity enclosed by a conductor is zero.
In the light of the above statements, choose the most appropriate answer from the options given below:
If $\epsilon_0$ denotes the permittivity of free space and $\Phi_E$ is the flux of the electric field through the area bounded by the closed surface, then dimensions of $\left(\epsilon_0 \frac{d \phi_E}{d t}\right)$ are that of :