A satellite of $$10^3 \mathrm{~kg}$$ mass is revolving in circular orbit of radius $$2 R$$. If $$\frac{10^4 R}{6} \mathrm{~J}$$ energy is supplied to the satellite, it would revolve in a new circular orbit of radius
(use $$g=10 \mathrm{~m} / \mathrm{s}^2, R=$$ radius of earth)
An astronaut takes a ball of mass $$m$$ from earth to space. He throws the ball into a circular orbit about earth at an altitude of $$318.5 \mathrm{~km}$$. From earth's surface to the orbit, the change in total mechanical energy of the ball is $$x \frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{21 \mathrm{R}_{\mathrm{e}}}$$. The value of $$x$$ is (take $$\mathrm{R}_{\mathrm{e}}=6370 \mathrm{~km})$$ :
Two satellite A and B go round a planet in circular orbits having radii 4R and R respectively. If the speed of $$\mathrm{A}$$ is $$3 v$$, the speed of $$\mathrm{B}$$ will be :
Two planets $$A$$ and $$B$$ having masses $$m_1$$ and $$m_2$$ move around the sun in circular orbits of $$r_1$$ and $$r_2$$ radii respectively. If angular momentum of $$A$$ is $$L$$ and that of $$B$$ is $$3 \mathrm{~L}$$, the ratio of time period $$\left(\frac{T_A}{T_B}\right)$$ is: