1
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A charge of $$4 \,\mu \mathrm{C}$$ is to be divided into two. The distance between the two divided charges is constant. The magnitude of the divided charges so that the force between them is maximum, will be :

A
$$1 \,\mu \mathrm{C}$$ and $$3 \,\mu\mathrm{C}$$
B
$$2 \,\mu \mathrm{C}$$ and $$2\, \mu \mathrm{C}$$
C
0 and $$4\, \mu\, \mathrm{C}$$
D
$$1.5 \,\mu \mathrm{C}$$ and $$2.5\, \mu \mathrm{C}$$
2
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Two identical positive charges $$Q$$ each are fixed at a distance of '2a' apart from each other. Another point charge $$q_{0}$$ with mass 'm' is placed at midpoint between two fixed charges. For a small displacement along the line joining the fixed charges, the charge $$\mathrm{q}_{0}$$ executes $$\mathrm{SHM}$$. The time period of oscillation of charge $$\mathrm{q}_{0}$$ will be :

A
$$\sqrt{\frac{4 \pi^{3} \varepsilon_{0} m a^{3}}{q_{0} Q}}$$
B
$$\sqrt{\frac{q_{0} Q}{4 \pi^{3} \varepsilon_{0} m a^{3}}}$$
C
$$\sqrt{\frac{2 \pi^{2} \varepsilon_{0} m a^{3}}{q_{0} Q}}$$
D
$$\sqrt{\frac{8 \pi^{3} \varepsilon_{0} m a^{3}}{q_{0} Q}}$$
3
JEE Main 2022 (Online) 26th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Two uniformly charged spherical conductors $$A$$ and $$B$$ of radii $$5 \mathrm{~mm}$$ and $$10 \mathrm{~mm}$$ are separated by a distance of $$2 \mathrm{~cm}$$. If the spheres are connected by a conducting wire, then in equilibrium condition, the ratio of the magnitudes of the electric fields at the surface of the sphere $$A$$ and $$B$$ will be :

A
1 : 2
B
2 : 1
C
1 : 1
D
1 : 4
4
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Two point charges Q each are placed at a distance d apart. A third point charge q is placed at a distance x from mid-point on the perpendicular bisector. The value of x at which charge q will experience the maximum Coulomb's force is :

A
x = d
B
$$x = {d \over 2}$$
C
$$x = {d \over {\sqrt 2 }}$$
D
$$x = {d \over {2\sqrt 2 }}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12