Consider two infinitely large plane parallel conducting plates as shown below. The plates are uniformly charged with a surface charge density $+\sigma$ and $-2 \sigma$. The force experienced by a point charge +q placed at the mid point between two plates will be:
A point charge $+q$ is placed at the origin. A second point charge $+9 q$ is placed at ($\mathrm{d}, 0,0$) in Cartesian coordinate system. The point in between them where the electric field vanishes is:
A small bob of mass 100 mg and charge $+10 \mu \mathrm{C}$ is connected to an insulating string of length 1 m . It is brought near to an infinitely long non-conducting sheet of charge density ' $\sigma$ ' as shown in figure. If string subtends an angle of $45^{\circ}$ with the sheet at equilibrium the charge density of sheet will be.
(Given, $\epsilon_0=8.85 \times 10^{-12} \frac{\mathrm{~F}}{\mathrm{~m}}$ and acceleration due to gravity, $\mathrm{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}^2}$ )
A point charge causes an electric flux of $-2 \times 10^4 \mathrm{Nm}^2 \mathrm{C}^{-1}$ to pass through a spherical Gaussian surface of 8.0 cm radius, centred on the charge. The value of the point charge is :
(Given $\epsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ )