An electric field $$\vec{E}=(2 x \hat{i}) N C^{-1}$$ exists in space. A cube of side $$2 \mathrm{~m}$$ is placed in the space as per figure given below. The electric flux through the cube is ______ $$\mathrm{Nm}^2 / \mathrm{C}$$.
At the centre of a half ring of radius $$\mathrm{R}=10 \mathrm{~cm}$$ and linear charge density $$4 \mathrm{~nC} \mathrm{~m}^{-1}$$, the potential is $$x \pi \mathrm{V}$$. The value of $$x$$ is _________.
If the net electric field at point $$\mathrm{P}$$ along $$\mathrm{Y}$$ axis is zero, then the ratio of $$\left|\frac{q_2}{q_3}\right|$$ is $$\frac{8}{5 \sqrt{x}}$$, where $$x=$$ ________.
An electric field, $$\overrightarrow{\mathrm{E}}=\frac{2 \hat{i}+6 \hat{j}+8 \hat{k}}{\sqrt{6}}$$ passes through the surface of $$4 \mathrm{~m}^2$$ area having unit vector $$\hat{n}=\left(\frac{2 \hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}\right)$$. The electric flux for that surface is _________ $$\mathrm{Vm}$$.