Two point charges $-4 \mu \mathrm{c}$ and $4 \mu \mathrm{c}$, constituting an electric dipole, are placed at $(-9,0,0) \mathrm{cm}$ and $(9,0,0) \mathrm{cm}$ in a uniform electric field of strength $10^4 \mathrm{NC}^{-1}$. The work done on the dipole in rotating it from the equilibrium through $180^{\circ}$ is :
Two charges $7 \mu \mathrm{c}$ and $-4 \mu \mathrm{c}$ are placed at $(-7 \mathrm{~cm}, 0,0)$ and $(7 \mathrm{~cm}, 0,0)$ respectively. Given, $\epsilon_0=8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, the electrostatic potential energy of the charge configuration is :
A point particle of charge $Q$ is located at $P$ along the axis of an electric dipole 1 at a distance $r$ as shown in the figure. The point P is also on the equatorial plane of a second electric dipole 2 at a distance r. The dipoles are made of opposite charge q separated by a distance $2 a$. For the charge particle at P not to experience any net force, which of the following correctly describes the situation?
The electric flux is $\phi=\alpha \sigma+\beta \lambda$ where $\lambda$ and $\sigma$ are linear and surface charge density, respectively. $\left(\frac{\alpha}{\beta}\right)$ represents