UV light of $$4.13 \mathrm{~eV}$$ is incident on a photosensitive metal surface having work function $$3.13 \mathrm{~eV}$$. The maximum kinetic energy of ejected photoelectrons will be:
A proton, an electron and an alpha particle have the same energies. Their de-Broglie wavelengths will be compared as :
A proton and an electron have the same de Broglie wavelength. If $$\mathrm{K}_{\mathrm{p}}$$ and $$\mathrm{K}_{\mathrm{e}}$$ be the kinetic energies of proton and electron respectively, then choose the correct relation :
A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:
(Assume h = 6.63 $$\times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{~m}_{\mathrm{e}}=9.0 \times 10^{-31} \mathrm{~kg}$$ and $$\mathrm{m}_{\mathrm{p}}=1836$$ times $$\mathrm{m}_{\mathrm{e}}$$ )