Two identical positive charges $$Q$$ each are fixed at a distance of '2a' apart from each other. Another point charge $$q_{0}$$ with mass 'm' is placed at midpoint between two fixed charges. For a small displacement along the line joining the fixed charges, the charge $$\mathrm{q}_{0}$$ executes $$\mathrm{SHM}$$. The time period of oscillation of charge $$\mathrm{q}_{0}$$ will be :
Two uniformly charged spherical conductors $$A$$ and $$B$$ of radii $$5 \mathrm{~mm}$$ and $$10 \mathrm{~mm}$$ are separated by a distance of $$2 \mathrm{~cm}$$. If the spheres are connected by a conducting wire, then in equilibrium condition, the ratio of the magnitudes of the electric fields at the surface of the sphere $$A$$ and $$B$$ will be :
Two point charges Q each are placed at a distance d apart. A third point charge q is placed at a distance x from mid-point on the perpendicular bisector. The value of x at which charge q will experience the maximum Coulomb's force is :
If the electric potential at any point (x, y, z) m in space is given by V = 3x2 volt. The electric field at the point (1, 0, 3) m will be :