Let the angle $\theta, 0<\theta<\frac{\pi}{2}$ between two unit vectors $\hat{a}$ and $\hat{b}$ be $\sin ^{-1}\left(\frac{\sqrt{65}}{9}\right)$. If the vector $\vec{c}=3 \hat{a}+6 \hat{b}+9(\hat{a} \times \hat{b})$, then the value of $9(\vec{c} \cdot \hat{a})-3(\vec{c} \cdot \hat{b})$ is
Let $x_1, x_2, x_3, x_4$ be in a geometric progression. If $2,7,9,5$ are subtracted respectively from $x_1, x_2, x_3, x_4$, then the resulting numbers are in an arithmetic progression. Then the value of $\frac{1}{24}\left(x_1 x_2 x_3 x_4\right)$ is:
The number of singular matrices of order 2 , whose elements are from the set $\{2,3,6,9\}$, is __________.
The number of relations on the set $A=\{1,2,3\}$, containing at most 6 elements including $(1,2)$, which are reflexive and transitive but not symmetric, is __________.