1
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $y=y(x)$ be the solution curve of the differential equation

$x\left(x^2+e^x\right) d y+\left(\mathrm{e}^x(x-2) y-x^3\right) \mathrm{d} x=0, x>0$, passing through the point $(1,0)$. Then $y(2)$ is equal to :

A
$\frac{2}{2+e^2}$
B
$\frac{4}{4-e^2}$
C
$\frac{4}{4+e^2}$
D
$\frac{2}{2-e^2}$
2
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.

If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :

A
820
B
866
C
750
D
732
3
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The remainder when $\left((64)^{(64)}\right)^{(64)}$ is divided by 7 is equal to

A
4
B
6
C
3
D
1
4
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If for $\theta \in\left[-\frac{\pi}{3}, 0\right]$, the points $(x, y)=\left(3 \tan \left(\theta+\frac{\pi}{3}\right), 2 \tan \left(\theta+\frac{\pi}{6}\right)\right)$ lie on $x y+\alpha x+\beta y+\gamma=0$, then $\alpha^2+\beta^2+\gamma^2$ is equal to :

A
75
B
96
C
80
D
72
JEE Main Papers
2023
2021
EXAM MAP