Let $C_1$ be the circle in the third quadrant of radius 3 , that touches both coordinate axes. Let $C_2$ be the circle with centre $(1,3)$ that touches $\mathrm{C}_1$ externally at the point $(\alpha, \beta)$. If $(\beta-\alpha)^2=\frac{m}{n}$ , $\operatorname{gcd}(m, n)=1$, then $m+n$ is equal to
Let P be the parabola, whose focus is $(-2,1)$ and directrix is $2 x+y+2=0$. Then the sum of the ordinates of the points on P, whose abscissa is $-$2, is
The mean and standard deviation of 100 observations are 40 and 5.1 , respectively. By mistake one observation is taken as 50 instead of 40 . If the correct mean and the correct standard deviation are $\mu$ and $\sigma$ respectively, then $10(\mu+\sigma)$ is equal to
Let ABC be the triangle such that the equations of lines AB and AC be $3 y-x=2$ and $x+y=2$, respectively, and the points B and C lie on $x$-axis. If P is the orthocentre of the triangle ABC , then the area of the triangle PBC is equal to