1
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

$\lim _\limits{x \rightarrow 0^{+}} \frac{\tan \left(5(x)^{\frac{1}{3}}\right) \log _e\left(1+3 x^2\right)}{\left(\tan ^{-1} 3 \sqrt{x}\right)^2\left(e^{5(x)^{\frac{4}{3}}}-1\right)}$ is equal to

A
$\frac{5}{3}$
B
1
C
$\frac{1}{3}$
D
$\frac{1}{15}$
2
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $y=y(x)$ be the solution curve of the differential equation

$x\left(x^2+e^x\right) d y+\left(\mathrm{e}^x(x-2) y-x^3\right) \mathrm{d} x=0, x>0$, passing through the point $(1,0)$. Then $y(2)$ is equal to :

A
$\frac{2}{2+e^2}$
B
$\frac{4}{4-e^2}$
C
$\frac{4}{4+e^2}$
D
$\frac{2}{2-e^2}$
3
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.

If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :

A
820
B
866
C
750
D
732
4
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

The remainder when $\left((64)^{(64)}\right)^{(64)}$ is divided by 7 is equal to

A
4
B
6
C
3
D
1
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12