1
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

If the area of the region bounded by the curves $y=4-\frac{x^2}{4}$ and $y=\frac{x-4}{2}$ is equal to $\alpha$, then $6 \alpha$. equals

A
210
B
250
C
240
D
220
2
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

If the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x}{1}=\frac{y}{\alpha}=\frac{z-5}{1}$ is $\frac{5}{\sqrt{6}}$, then the sum of all possible values of $\alpha$ is

A
$\frac{3}{2}$
B
$3$
C
$-3$
D
$-\frac{3}{2}$
3
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^3+a x^2+b \log _{\mathrm{e}}|x|+1, x \neq 0$. Let $m$ and M respectively be the absolute minimum and the absolute maximum values of $f$ in the interval $\left[-2,-\frac{1}{2}\right]$. Then $|\mathrm{M}+m|$ is equal to $\left(\right.$ Take $\left.\log _{\mathrm{e}} 2=0.7\right):$

A
21.1
B
19.8
C
22.1
D
20.9
4
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let the angle $\theta, 0<\theta<\frac{\pi}{2}$ between two unit vectors $\hat{a}$ and $\hat{b}$ be $\sin ^{-1}\left(\frac{\sqrt{65}}{9}\right)$. If the vector $\vec{c}=3 \hat{a}+6 \hat{b}+9(\hat{a} \times \hat{b})$, then the value of $9(\vec{c} \cdot \hat{a})-3(\vec{c} \cdot \hat{b})$ is

A
31
B
29
C
24
D
27
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12