Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.
If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :
The remainder when $\left((64)^{(64)}\right)^{(64)}$ is divided by 7 is equal to
If for $\theta \in\left[-\frac{\pi}{3}, 0\right]$, the points $(x, y)=\left(3 \tan \left(\theta+\frac{\pi}{3}\right), 2 \tan \left(\theta+\frac{\pi}{6}\right)\right)$ lie on $x y+\alpha x+\beta y+\gamma=0$, then $\alpha^2+\beta^2+\gamma^2$ is equal to :
Let the system of equations :
$$ \begin{aligned} & 2 x+3 y+5 z=9 \\ & 7 x+3 y-2 z=8 \\ & 12 x+3 y-(4+\lambda) z=16-\mu \end{aligned}$$
have infinitely many solutions. Then the radius of the circle centred at $(\lambda, \mu)$ and touching the line $4 x=3 y$ is :