The given figure represents two isobaric processes for the same mass of an ideal gas, then
In the given arrangement of a doubly inclined plane two blocks of masses $$M$$ and $$m$$ are placed. The blocks are connected by a light string passing over an ideal pulley as shown. The coefficient of friction between the surface of the plane and the blocks is 0.25. The value of $$m$$, for which $$M=10 \mathrm{~kg}$$ will move down with an acceleration of $$2 \mathrm{~m} / \mathrm{s}^2$$, is: (take $$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$$ and $$\left.\tan 37^{\circ}=3 / 4\right)$$
The relation between time '$$t$$' and distance '$$x$$' is $$t=\alpha x^2+\beta x$$, where $$\alpha$$ and $$\beta$$ are constants. The relation between acceleration $$(a)$$ and velocity $$(v)$$ is :
An artillery piece of mass $$M_1$$ fires a shell of mass $$M_2$$ horizontally. Instantaneously after the firing, the ratio of kinetic energy of the artillery and that of the shell is: