Let $$\alpha, \beta, \gamma, \delta \in \mathbb{Z}$$ and let $$A(\alpha, \beta), B(1,0), C(\gamma, \delta)$$ and $$D(1,2)$$ be the vertices of a parallelogram $$\mathrm{ABCD}$$. If $$A B=\sqrt{10}$$ and the points $$\mathrm{A}$$ and $$\mathrm{C}$$ lie on the line $$3 y=2 x+1$$, then $$2(\alpha+\beta+\gamma+\delta)$$ is equal to
For $$0 < c < b < a$$, let $$(a+b-2 c) x^2+(b+c-2 a) x+(c+a-2 b)=0$$ and $$\alpha \neq 1$$ be one of its root. Then, among the two statements
(I) If $$\alpha \in(-1,0)$$, then $$b$$ cannot be the geometric mean of $a$ and $$c$$
(II) If $$\alpha \in(0,1)$$, then $$b$$ may be the geometric mean of $$a$$ and $$c$$
If $$f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$$ and $$(f \circ f)(x)=g(x)$$, where $$g: \mathbb{R}-\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}-\left\{\frac{2}{3}\right\}$$, then $$(g ogog)(4)$$ is equal to
Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}=\frac{(\tan x)+y}{\sin x(\sec x-\sin x \tan x)}, x \in\left(0, \frac{\pi}{2}\right)$$ satisfying the condition $$y\left(\frac{\pi}{4}\right)=2$$. Then, $$y\left(\frac{\pi}{3}\right)$$ is