Let the foci and length of the latus rectum of an ellipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b b e( \pm 5,0)$$ and $$\sqrt{50}$$, respectively. Then, the square of the eccentricity of the hyperbola $$\frac{x^2}{b^2}-\frac{y^2}{a^2 b^2}=1$$ equals
The total number of words (with or without meaning) that can be formed out of the letters of the word 'DISTRIBUTION' taken four at a time, is equal to __________.
Let $$A=\{1,2,3,4\}$$ and $$R=\{(1,2),(2,3),(1,4)\}$$ be a relation on $$\mathrm{A}$$. Let $$\mathrm{S}$$ be the equivalence relation on $$\mathrm{A}$$ such that $$R \subset S$$ and the number of elements in $$\mathrm{S}$$ is $$\mathrm{n}$$. Then, the minimum value of $$n$$ is __________.
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{4^x}{4^x+2}$$ and $$M=\int_\limits{f(a)}^{f(1-a)} x \sin ^4(x(1-x)) d x, N=\int_\limits{f(a)}^{f(1-a)} \sin ^4(x(1-x)) d x ; a \neq \frac{1}{2}$$. If $$\alpha M=\beta N, \alpha, \beta \in \mathbb{N}$$, then the least value of $$\alpha^2+\beta^2$$ is equal to __________.