1
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$$ and $$(f \circ f)(x)=g(x)$$, where $$g: \mathbb{R}-\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}-\left\{\frac{2}{3}\right\}$$, then $$(g ogog)(4)$$ is equal to

A
$$-4$$
B
$$\frac{19}{20}$$
C
$$-\frac{19}{20}$$
D
4
2
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}=\frac{(\tan x)+y}{\sin x(\sec x-\sin x \tan x)}, x \in\left(0, \frac{\pi}{2}\right)$$ satisfying the condition $$y\left(\frac{\pi}{4}\right)=2$$. Then, $$y\left(\frac{\pi}{3}\right)$$ is

A
$$\sqrt{3}\left(2+\log _e 3\right)$$
B
$$\sqrt{3}\left(1+2 \log _e 3\right)$$
C
$$\sqrt{3}\left(2+\log _e \sqrt{3}\right)$$
D
$$\frac{\sqrt{3}}{2}\left(2+\log _e 3\right)$$
3
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Three rotten apples are accidently mixed with fifteen good apples. Assuming the random variable $$x$$ to be the number of rotten apples in a draw of two apples, the variance of $$x$$ is

A
$$\frac{57}{153}$$
B
$$\frac{40}{153}$$
C
$$\frac{37}{153}$$
D
$$\frac{47}{153}$$
4
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=4 \hat{i}+\hat{j}+7 \hat{k}$$ and $$\vec{c}=\hat{i}-3 \hat{j}+4 \hat{k}$$ be three vectors. If a vectors $$\vec{p}$$ satisfies $$\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{p} \cdot \vec{a}=0$$, then $$\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})$$ is equal to

A
24
B
32
C
36
D
28
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12