Let $$S=(-1, \infty)$$ and $$f: S \rightarrow \mathbb{R}$$ be defined as
$$f(x)=\int_\limits{-1}^x\left(e^t-1\right)^{11}(2 t-1)^5(t-2)^7(t-3)^{12}(2 t-10)^{61} d t \text {, }$$
Let $$\mathrm{p}=$$ Sum of squares of the values of $$x$$, where $$f(x)$$ attains local maxima on $$S$$, and $$\mathrm{q}=$$ Sum of the values of $$\mathrm{x}$$, where $$f(x)$$ attains local minima on $$S$$. Then, the value of $$p^2+2 q$$ is _________.
Let $$\mathrm{Q}$$ and $$\mathrm{R}$$ be the feet of perpendiculars from the point $$\mathrm{P}(a, a, a)$$ on the lines $$x=y, z=1$$ and $$x=-y, z=-1$$ respectively. If $$\angle \mathrm{QPR}$$ is a right angle, then $$12 a^2$$ is equal to _________.
Let the foci and length of the latus rectum of an ellipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b b e( \pm 5,0)$$ and $$\sqrt{50}$$, respectively. Then, the square of the eccentricity of the hyperbola $$\frac{x^2}{b^2}-\frac{y^2}{a^2 b^2}=1$$ equals
The total number of words (with or without meaning) that can be formed out of the letters of the word 'DISTRIBUTION' taken four at a time, is equal to __________.