1
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=4 \hat{i}+\hat{j}+7 \hat{k}$$ and $$\vec{c}=\hat{i}-3 \hat{j}+4 \hat{k}$$ be three vectors. If a vectors $$\vec{p}$$ satisfies $$\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{p} \cdot \vec{a}=0$$, then $$\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})$$ is equal to

A
24
B
32
C
36
D
28
2
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the series $$\frac{1}{1-3 \cdot 1^2+1^4}+\frac{2}{1-3 \cdot 2^2+2^4}+\frac{3}{1-3 \cdot 3^2+3^4}+\ldots$$ up to 10 -terms is

A
$$\frac{45}{109}$$
B
$$-\frac{55}{109}$$
C
$$\frac{55}{109}$$
D
$$-\frac{45}{109}$$
3
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and 15 orange marbles, with replacement being made after each drawing. Then the probability, that first drawn marble is red and second drawn marble is white, is

A
$$\frac{4}{25}$$
B
$$\frac{2}{3}$$
C
$$\frac{2}{25}$$
D
$$\frac{4}{75}$$
4
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The distance of the point $$Q(0,2,-2)$$ form the line passing through the point $$P(5,-4, 3)$$ and perpendicular to the lines $$\vec{r}=(-3 \hat{i}+2 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+5 \hat{k}), \lambda \in \mathbb{R}$$ and $$\vec{r}=(\hat{i}-2 \hat{j}+\hat{k})+\mu(-\hat{i}+3 \hat{j}+2 \hat{k}), \mu \in \mathbb{R}$$ is :

A
$$\sqrt{74}$$
B
$$\sqrt{86}$$
C
$$\sqrt{54}$$
D
$$\sqrt{20}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12