Let $$A=\{1,2,3,4\}$$ and $$R=\{(1,2),(2,3),(1,4)\}$$ be a relation on $$\mathrm{A}$$. Let $$\mathrm{S}$$ be the equivalence relation on $$\mathrm{A}$$ such that $$R \subset S$$ and the number of elements in $$\mathrm{S}$$ is $$\mathrm{n}$$. Then, the minimum value of $$n$$ is __________.
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$f(x)=\frac{4^x}{4^x+2}$$ and $$M=\int_\limits{f(a)}^{f(1-a)} x \sin ^4(x(1-x)) d x, N=\int_\limits{f(a)}^{f(1-a)} \sin ^4(x(1-x)) d x ; a \neq \frac{1}{2}$$. If $$\alpha M=\beta N, \alpha, \beta \in \mathbb{N}$$, then the least value of $$\alpha^2+\beta^2$$ is equal to __________.
Four identical particles of mass $$m$$ are kept at the four corners of a square. If the gravitational force exerted on one of the masses by the other masses is $$\left(\frac{2 \sqrt{2}+1}{32}\right) \frac{\mathrm{Gm}^2}{L^2}$$, the length of the sides of the square is
Two charges $$q$$ and $$3 q$$ are separated by a distance '$$r$$' in air. At a distance $$x$$ from charge $$q$$, the resultant electric field is zero. The value of $$x$$ is :