The distance of the point $$Q(0,2,-2)$$ form the line passing through the point $$P(5,-4, 3)$$ and perpendicular to the lines $$\vec{r}=(-3 \hat{i}+2 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+5 \hat{k}), \lambda \in \mathbb{R}$$ and $$\vec{r}=(\hat{i}-2 \hat{j}+\hat{k})+\mu(-\hat{i}+3 \hat{j}+2 \hat{k}), \mu \in \mathbb{R}$$ is :
If the system of linear equations
$$\begin{aligned} & x-2 y+z=-4 \\ & 2 x+\alpha y+3 z=5 \\ & 3 x-y+\beta z=3 \end{aligned}$$
has infinitely many solutions, then $$12 \alpha+13 \beta$$ is equal to
Let $$g(x)$$ be a linear function and $$f(x)=\left\{\begin{array}{cl}g(x) & , x \leq 0 \\ \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}} & , x>0\end{array}\right.$$, is continuous at $$x=0$$. If $$f^{\prime}(1)=f(-1)$$, then the value $$g(3)$$ is
The area of the region $$\left\{(x, y): y^2 \leq 4 x, x<4, \frac{x y(x-1)(x-2)}{(x-3)(x-4)}>0, x \neq 3\right\}$$ is