Let $$a$$ be the sum of all coefficients in the expansion of $$\left(1-2 x+2 x^2\right)^{2023}\left(3-4 x^2+2 x^3\right)^{2024}$$ and $$b=\lim _\limits{x \rightarrow 0}\left(\frac{\int_0^x \frac{\log (1+t)}{t^{2024}+1} d t}{x^2}\right)$$. If the equation $$c x^2+d x+e=0$$ and $$2 b x^2+a x+4=0$$ have a common root, where $$c, d, e \in \mathbb{R}$$, then $$\mathrm{d}: \mathrm{c}:$$ e equals
$$\text { If } f(x)=\left|\begin{array}{ccc} x^3 & 2 x^2+1 & 1+3 x \\ 3 x^2+2 & 2 x & x^3+6 \\ x^3-x & 4 & x^2-2 \end{array}\right| \text { for all } x \in \mathbb{R} \text {, then } 2 f(0)+f^{\prime}(0) \text { is equal to }$$
If one of the diameters of the circle $$x^2+y^2-10 x+4 y+13=0$$ is a chord of another circle $$\mathrm{C}$$, whose center is the point of intersection of the lines $$2 x+3 y=12$$ and $$3 x-2 y=5$$, then the radius of the circle $$\mathrm{C}$$ is :
If the foci of a hyperbola are same as that of the ellipse $$\frac{x^2}{9}+\frac{y^2}{25}=1$$ and the eccentricity of the hyperbola is $$\frac{15}{8}$$ times the eccentricity of the ellipse, then the smaller focal distance of the point $$\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right)$$ on the hyperbola, is equal to