1
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the region

A = {(x, y) : (x – 1)[x] $$ \le $$ y $$ \le $$ 2$$\sqrt x $$, 0 $$ \le $$ x $$ \le $$ 2}, where [t]

denotes the greatest integer function, is :
A
$${8 \over 3}\sqrt 2 - 1$$
B
$${4 \over 3}\sqrt 2 + 1$$
C
$${8 \over 3}\sqrt 2 - {1 \over 2}$$
D
$${4 \over 3}\sqrt 2 - {1 \over 2}$$
2
JEE Main 2020 (Online) 5th September Evening Slot
Numerical
+4
-0
Change Language
Let A = {a, b, c} and B = {1, 2, 3, 4}. Then the number of elements in the set
C = {f : A $$ \to $$ B | 2 $$ \in $$ f(A) and f is not one-one} is ______.
Your input ____
3
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If L = sin2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$ and
M = cos2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$, then :
A
L = $$ - {1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
B
M = $${1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
C
M = $${1 \over {4\sqrt 2 }} + {1 \over 4}\cos {\pi \over 8}$$
D
L = $${1 \over {4\sqrt 2 }} - {1 \over 4}\cos {\pi \over 8}$$
4
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If
$$\int {{{\cos \theta } \over {5 + 7\sin \theta - 2{{\cos }^2}\theta }}} d\theta $$ = A$${\log _e}\left| {B\left( \theta \right)} \right| + C$$,

where C is a constant of integration, then $${{{B\left( \theta \right)} \over A}}$$
can be :
A
$${{2\sin \theta + 1} \over {5\left( {\sin \theta + 3} \right)}}$$
B
$${{2\sin \theta + 1} \over {\sin \theta + 3}}$$
C
$${{5\left( {2\sin \theta + 1} \right)} \over {\sin \theta + 3}}$$
D
$${{5\left( {\sin \theta + 3} \right)} \over {2\sin \theta + 1}}$$
JEE Main Papers
2023
2021
EXAM MAP