1
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the region

A = {(x, y) : (x – 1)[x] $$ \le $$ y $$ \le $$ 2$$\sqrt x $$, 0 $$ \le $$ x $$ \le $$ 2}, where [t]

denotes the greatest integer function, is :
A
$${8 \over 3}\sqrt 2 - 1$$
B
$${4 \over 3}\sqrt 2 + 1$$
C
$${8 \over 3}\sqrt 2 - {1 \over 2}$$
D
$${4 \over 3}\sqrt 2 - {1 \over 2}$$
2
JEE Main 2020 (Online) 5th September Evening Slot
Numerical
+4
-0
Change Language
Let A = {a, b, c} and B = {1, 2, 3, 4}. Then the number of elements in the set
C = {f : A $$ \to $$ B | 2 $$ \in $$ f(A) and f is not one-one} is ______.
Your input ____
3
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If L = sin2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$ and
M = cos2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$, then :
A
L = $$ - {1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
B
M = $${1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
C
M = $${1 \over {4\sqrt 2 }} + {1 \over 4}\cos {\pi \over 8}$$
D
L = $${1 \over {4\sqrt 2 }} - {1 \over 4}\cos {\pi \over 8}$$
4
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If
$$\int {{{\cos \theta } \over {5 + 7\sin \theta - 2{{\cos }^2}\theta }}} d\theta $$ = A$${\log _e}\left| {B\left( \theta \right)} \right| + C$$,

where C is a constant of integration, then $${{{B\left( \theta \right)} \over A}}$$
can be :
A
$${{2\sin \theta + 1} \over {5\left( {\sin \theta + 3} \right)}}$$
B
$${{2\sin \theta + 1} \over {\sin \theta + 3}}$$
C
$${{5\left( {2\sin \theta + 1} \right)} \over {\sin \theta + 3}}$$
D
$${{5\left( {\sin \theta + 3} \right)} \over {2\sin \theta + 1}}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12