1
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If
$$\int {{{\cos \theta } \over {5 + 7\sin \theta - 2{{\cos }^2}\theta }}} d\theta $$ = A$${\log _e}\left| {B\left( \theta \right)} \right| + C$$,

where C is a constant of integration, then $${{{B\left( \theta \right)} \over A}}$$
can be :
A
$${{2\sin \theta + 1} \over {5\left( {\sin \theta + 3} \right)}}$$
B
$${{2\sin \theta + 1} \over {\sin \theta + 3}}$$
C
$${{5\left( {2\sin \theta + 1} \right)} \over {\sin \theta + 3}}$$
D
$${{5\left( {\sin \theta + 3} \right)} \over {2\sin \theta + 1}}$$
2
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the length of the chord of the circle,
x2 + y2 = r2 (r > 0) along the line, y – 2x = 3 is r,
then r2 is equal to :
A
$${9 \over 5}$$
B
$${{24} \over 5}$$
C
$${{12} \over 5}$$
D
12
3
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha $$ and $$\beta $$ are the roots of the equation,
7x2 – 3x – 2 = 0, then the value of
$${\alpha \over {1 - {\alpha ^2}}} + {\beta \over {1 - {\beta ^2}}}$$ is equal to :
A
$${1 \over {24}}$$
B
$${{27} \over {32}}$$
C
$${{27} \over {16}}$$
D
$${3 \over 8}$$
4
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The derivative of
$${\tan ^{ - 1}}\left( {{{\sqrt {1 + {x^2}} - 1} \over x}} \right)$$ with
respect to $${\tan ^{ - 1}}\left( {{{2x\sqrt {1 - {x^2}} } \over {1 - 2{x^2}}}} \right)$$ at x = $${1 \over 2}$$ is :
A
$${{2\sqrt 3 } \over 3}$$
B
$${{2\sqrt 3 } \over 5}$$
C
$${{\sqrt 3 } \over {10}}$$
D
$${{\sqrt 3 } \over {12}}$$
JEE Main Papers
2023
2021
EXAM MAP