1
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha $$ and $$\beta $$ are the roots of the equation,
7x2 – 3x – 2 = 0, then the value of
$${\alpha \over {1 - {\alpha ^2}}} + {\beta \over {1 - {\beta ^2}}}$$ is equal to :
A
$${1 \over {24}}$$
B
$${{27} \over {32}}$$
C
$${{27} \over {16}}$$
D
$${3 \over 8}$$
2
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If L = sin2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$ and
M = cos2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$, then :
A
L = $$ - {1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
B
M = $${1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
C
M = $${1 \over {4\sqrt 2 }} + {1 \over 4}\cos {\pi \over 8}$$
D
L = $${1 \over {4\sqrt 2 }} - {1 \over 4}\cos {\pi \over 8}$$
3
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The derivative of
$${\tan ^{ - 1}}\left( {{{\sqrt {1 + {x^2}} - 1} \over x}} \right)$$ with
respect to $${\tan ^{ - 1}}\left( {{{2x\sqrt {1 - {x^2}} } \over {1 - 2{x^2}}}} \right)$$ at x = $${1 \over 2}$$ is :
A
$${{2\sqrt 3 } \over 3}$$
B
$${{2\sqrt 3 } \over 5}$$
C
$${{\sqrt 3 } \over {10}}$$
D
$${{\sqrt 3 } \over {12}}$$
4
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the system of linear equations
x + y + 3z = 0
x + 3y + k2z = 0
3x + y + 3z = 0
has a non-zero solution (x, y, z) for some k $$ \in $$ R, then x + $$\left( {{y \over z}} \right)$$ is equal to :
A
9
B
3
C
-9
D
-3
JEE Main Papers
2023
2021
EXAM MAP