1
JEE Main 2020 (Online) 5th September Evening Slot
Numerical
+4
-0
Change Language
Let the vectors $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be such that
$$\left| {\overrightarrow a } \right| = 2$$, $$\left| {\overrightarrow b } \right| = 4$$ and $$\left| {\overrightarrow c } \right| = 4$$. If the projection of
$$\overrightarrow b $$ on $$\overrightarrow a $$ is equal to the projection of $$\overrightarrow c $$ on $$\overrightarrow a $$
and $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$, then the value of
$$\left| {\overrightarrow a + \vec b - \overrightarrow c } \right|$$ is ___________.
Your input ____
2
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The area (in sq. units) of the region

A = {(x, y) : (x – 1)[x] $$ \le $$ y $$ \le $$ 2$$\sqrt x $$, 0 $$ \le $$ x $$ \le $$ 2}, where [t]

denotes the greatest integer function, is :
A
$${8 \over 3}\sqrt 2 - 1$$
B
$${4 \over 3}\sqrt 2 + 1$$
C
$${8 \over 3}\sqrt 2 - {1 \over 2}$$
D
$${4 \over 3}\sqrt 2 - {1 \over 2}$$
3
JEE Main 2020 (Online) 5th September Evening Slot
Numerical
+4
-0
Change Language
Let A = {a, b, c} and B = {1, 2, 3, 4}. Then the number of elements in the set
C = {f : A $$ \to $$ B | 2 $$ \in $$ f(A) and f is not one-one} is ______.
Your input ____
4
JEE Main 2020 (Online) 5th September Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If L = sin2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$ and
M = cos2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$, then :
A
L = $$ - {1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
B
M = $${1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
C
M = $${1 \over {4\sqrt 2 }} + {1 \over 4}\cos {\pi \over 8}$$
D
L = $${1 \over {4\sqrt 2 }} - {1 \over 4}\cos {\pi \over 8}$$
JEE Main Papers
2023
2021
EXAM MAP