1
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
If $$z \ne 1$$ and $$\,{{{z^2}} \over {z - 1}}\,$$ is real, then the point represented by the complex number z lies :
A
either on the real axis or a circle passing through the origin.
B
on a circle with centre at the origin
C
either on real axis or on a circle not passing through the origin.
D
on the imaginary axis.
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let $$ABCD$$ be a parallelogram such that $$\overrightarrow {AB} = \overrightarrow q ,\overrightarrow {AD} = \overrightarrow p $$ and $$\angle BAD$$ be an acute angle. If $$\overrightarrow r $$ is the vector that coincide with the altitude directed from the vertex $$B$$ to the side $$AD,$$ then $$\overrightarrow r $$ is given by :
A
$$\overrightarrow r = 3\overrightarrow q - {{3\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}\overrightarrow p $$
B
$$\overrightarrow r = - \overrightarrow q + {{\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}\overrightarrow p $$
C
$$\vec r = \vec q - {{\left( {\vec p.\vec q} \right)} \over {\left( {\vec p.\vec p} \right)}}\vec p$$
D
$$\overrightarrow r = - 3\overrightarrow q - {{3\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Truth table for system of four $$NAND$$ gates as shown in figure is: AIEEE 2012 Physics - Semiconductor Question 192 English
A
AIEEE 2012 Physics - Semiconductor Question 192 English Option 1
B
AIEEE 2012 Physics - Semiconductor Question 192 English Option 2
C
AIEEE 2012 Physics - Semiconductor Question 192 English Option 3
D
AIEEE 2012 Physics - Semiconductor Question 192 English Option 4
4
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
A diatomic molecule is made of two masses $${m_1}$$ and $${m_2}$$ which are separated by a distance $$r.$$ If we calculate its rotational energy by applying Bohr's rule of angular momentum quantization, its energy will be given by: ($$n$$ is an integer)
A
$${{{{\left( {{m_1} + {m_2}} \right)}^2}{n^2}{h^2}} \over {2m_1^2m_2^2{r^2}}}$$
B
$${{{n^2}{h^2}} \over {2\left( {{m_1} + {m_2}} \right){r^2}}}$$
C
$${{2{n^2}{h^2}} \over {\left( {{m_1} + {m_2}} \right){r^2}}}$$
D
$${{\left( {{m_1} + {m_2}} \right){n^2}{h^2}} \over {2{m_1}{m_2}{r^2}}}$$
JEE Main Papers
2023
2021
EXAM MAP