1
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
If $$z \ne 1$$ and $$\,{{{z^2}} \over {z - 1}}\,$$ is real, then the point represented by the complex number z lies :
A
either on the real axis or a circle passing through the origin.
B
on a circle with centre at the origin
C
either on real axis or on a circle not passing through the origin.
D
on the imaginary axis.
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let $$ABCD$$ be a parallelogram such that $$\overrightarrow {AB} = \overrightarrow q ,\overrightarrow {AD} = \overrightarrow p $$ and $$\angle BAD$$ be an acute angle. If $$\overrightarrow r $$ is the vector that coincide with the altitude directed from the vertex $$B$$ to the side $$AD,$$ then $$\overrightarrow r $$ is given by :
A
$$\overrightarrow r = 3\overrightarrow q - {{3\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}\overrightarrow p $$
B
$$\overrightarrow r = - \overrightarrow q + {{\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}\overrightarrow p $$
C
$$\vec r = \vec q - {{\left( {\vec p.\vec q} \right)} \over {\left( {\vec p.\vec p} \right)}}\vec p$$
D
$$\overrightarrow r = - 3\overrightarrow q - {{3\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Truth table for system of four $$NAND$$ gates as shown in figure is: AIEEE 2012 Physics - Semiconductor Question 174 English
A
AIEEE 2012 Physics - Semiconductor Question 174 English Option 1
B
AIEEE 2012 Physics - Semiconductor Question 174 English Option 2
C
AIEEE 2012 Physics - Semiconductor Question 174 English Option 3
D
AIEEE 2012 Physics - Semiconductor Question 174 English Option 4
4
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
A diatomic molecule is made of two masses $${m_1}$$ and $${m_2}$$ which are separated by a distance $$r.$$ If we calculate its rotational energy by applying Bohr's rule of angular momentum quantization, its energy will be given by: ($$n$$ is an integer)
A
$${{{{\left( {{m_1} + {m_2}} \right)}^2}{n^2}{h^2}} \over {2m_1^2m_2^2{r^2}}}$$
B
$${{{n^2}{h^2}} \over {2\left( {{m_1} + {m_2}} \right){r^2}}}$$
C
$${{2{n^2}{h^2}} \over {\left( {{m_1} + {m_2}} \right){r^2}}}$$
D
$${{\left( {{m_1} + {m_2}} \right){n^2}{h^2}} \over {2{m_1}{m_2}{r^2}}}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12