1
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let $$a,b \in R$$ be such that the function $$f$$ given by $$f\left( x \right) = In\left| x \right| + b{x^2} + ax,\,x \ne 0$$ has extreme values at $$x=-1$$ and $$x=2$$

Statement-1 : $$f$$ has local maximum at $$x=-1$$ and at $$x=2$$.

Statement-2 : $$a = {1 \over 2}$$ and $$b = {-1 \over 4}$$

A
Statement - 1 is false, Statement - 2 is true.
B
Statement - 1 is true , Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
C
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
D
Statement - 1 is true, Statement - 2 is false.
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two unit vectors. If the vectors $$\,\overrightarrow c = \widehat a + 2\widehat b$$ and $$\overrightarrow d = 5\widehat a - 4\widehat b$$ are perpendicular to each other, then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :
A
$${\pi \over 6}$$
B
$${\pi \over 2}$$
C
$${\pi \over 3}$$
D
$${\pi \over 4}$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Three numbers are chosen at random without replacement from $$\left\{ {1,2,3,..8} \right\}.$$ The probability that their minimum is $$3,$$ given that their maximum is $$6,$$ is :
A
$${3 \over 8}$$
B
$${1 \over 5}$$
C
$${1 \over 4}$$
D
$${2 \over 5}$$
4
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
The population $$p$$ $$(t)$$ at time $$t$$ of a certain mouse species satisfies the differential equation $${{dp\left( t \right)} \over {dt}} = 0.5\,p\left( t \right) - 450.\,\,$$ If $$p(0)=850,$$ then the time at which the population becomes zero is :
A
$$2ln$$ $$18$$
B
$$ln$$ $$9$$
C
$${1 \over 2}$$$$ln$$ $$18$$
D
$$ln$$ $$18$$
JEE Main Papers
2023
2021
EXAM MAP