1
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two unit vectors. If the vectors $$\,\overrightarrow c = \widehat a + 2\widehat b$$ and $$\overrightarrow d = 5\widehat a - 4\widehat b$$ are perpendicular to each other, then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :
A
$${\pi \over 6}$$
B
$${\pi \over 2}$$
C
$${\pi \over 3}$$
D
$${\pi \over 4}$$
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Three numbers are chosen at random without replacement from $$\left\{ {1,2,3,..8} \right\}.$$ The probability that their minimum is $$3,$$ given that their maximum is $$6,$$ is :
A
$${3 \over 8}$$
B
$${1 \over 5}$$
C
$${1 \over 4}$$
D
$${2 \over 5}$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
The population $$p$$ $$(t)$$ at time $$t$$ of a certain mouse species satisfies the differential equation $${{dp\left( t \right)} \over {dt}} = 0.5\,p\left( t \right) - 450.\,\,$$ If $$p(0)=850,$$ then the time at which the population becomes zero is :
A
$$2ln$$ $$18$$
B
$$ln$$ $$9$$
C
$${1 \over 2}$$$$ln$$ $$18$$
D
$$ln$$ $$18$$
4
AIEEE 2012
MCQ (More than One Correct Answer)
+4
-1
If $$g\left( x \right) = \int\limits_0^x {\cos 4t\,dt,} $$ then $$g\left( {x + \pi } \right)$$ equals
A
$${{g\left( x \right)} \over {8\left( \pi \right)}}$$
B
$$g\left( x \right) + g\left( \pi \right)$$
C
$$g\left( x \right) - g\left( \pi \right)$$
D
$$g\left( x \right) . g\left( \pi \right)$$
JEE Main Papers
2023
2021
EXAM MAP