1
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
The population $$p$$ $$(t)$$ at time $$t$$ of a certain mouse species satisfies the differential equation $${{dp\left( t \right)} \over {dt}} = 0.5\,p\left( t \right) - 450.\,\,$$ If $$p(0)=850,$$ then the time at which the population becomes zero is :
A
$$2ln$$ $$18$$
B
$$ln$$ $$9$$
C
$${1 \over 2}$$$$ln$$ $$18$$
D
$$ln$$ $$18$$
2
AIEEE 2012
MCQ (More than One Correct Answer)
+4
-1
If $$g\left( x \right) = \int\limits_0^x {\cos 4t\,dt,} $$ then $$g\left( {x + \pi } \right)$$ equals
A
$${{g\left( x \right)} \over {8\left( \pi \right)}}$$
B
$$g\left( x \right) + g\left( \pi \right)$$
C
$$g\left( x \right) - g\left( \pi \right)$$
D
$$g\left( x \right) . g\left( \pi \right)$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
The area between the parabolas $${x^2} = {y \over 4}$$ and $${x^2} = 9y$$ and the straight line $$y=2$$ is :
A
$$20\sqrt 2 $$
B
$${{10\sqrt 2 } \over 3}$$
C
$${{20\sqrt 2 } \over 3}$$
D
$$10\sqrt 2 $$
4
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
If the $$\int {{{5\tan x} \over {\tan x - 2}}dx = x + a\,\ln \,\left| {\sin x - 2\cos x} \right| + k,} $$ then $$a$$ is
equal to :
A
$$-1$$
B
$$-2$$
C
$$1$$
D
$$2$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12