1
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let X = {1, 2, 3, 4, 5}. The number of different ordered pairs (Y, Z) that can be formed such that Y $$ \subseteq $$ X, Z $$ \subseteq $$ X and Y $$ \cap $$ Z is empty, is :
A
35
B
25
C
53
D
52
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let x1, x2,........., xn be n observations, and let $$\overline x $$ be their arithematic mean and $${\sigma ^2}$$ be their variance.

Statement 1 : Variance of 2x1, 2x2,......., 2xn is 4$${\sigma ^2}$$.
Statement 2 : : Arithmetic mean of 2x1, 2x2,......, 2xn is 4$$\overline x $$.
A
Statement 1 is false, statement 2 is true
B
Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1
C
Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1
D
Statement 1 is true, statement 2 is false
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Consider the function, $$f\left( x \right) = \left| {x - 2} \right| + \left| {x - 5} \right|,x \in R$$

Statement - 1 : $$f'\left( 4 \right) = 0$$

Statement - 2 : $$f$$ is continuous in [2, 5], differentiable in (2, 5) and $$f$$(2) = $$f$$(5)
A
Statement - 1 is false, statement - 2 is true
B
Statement - 1 is true, statement - 2 is true; statement - 2 is a correct explanation for statement - 1
C
Statement - 1 is true, statement - 2 is true; statement - 2 is not a correct explanation for statement - 1
D
Statement - 1 is true, statement - 2 is false
4
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
If $$f:R \to R$$ is a function defined by

$$f\left( x \right) = \left[ x \right]\cos \left( {{{2x - 1} \over 2}} \right)\pi $$,

where [x] denotes the greatest integer function, then $$f$$ is
A
continuous for every real $$x$$
B
discontinuous only at $$x=0$$
C
discontinuous only at non-zero integral values of $$x$$
D
continuous only at $$x=0$$
JEE Main Papers
2023
2021
EXAM MAP