1
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
A line is drawn through the point $$(1, 2)$$ to meet the coordinate axes at $$P$$ and $$Q$$ such that it forms a triangle $$OPQ,$$ where $$O$$ is the origin. If the area of the triangle $$OPQ$$ is least, then the slope of the line $$PQ$$ is :
A
$$-{1 \over 4}$$
B
$$-4$$
C
$$-2$$
D
$$-{1 \over 2}$$
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
If the line $${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 1} \over 4}$$ and $${{x - 3} \over 1} = {{y - k} \over 2} = {z \over 1}$$ intersect, then $$k$$ is equal to :
A
$$-1$$
B
$${2 \over 9}$$
C
$${9 \over 2}$$
D
$$0$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let $$a,b \in R$$ be such that the function $$f$$ given by $$f\left( x \right) = In\left| x \right| + b{x^2} + ax,\,x \ne 0$$ has extreme values at $$x=-1$$ and $$x=2$$

Statement-1 : $$f$$ has local maximum at $$x=-1$$ and at $$x=2$$.

Statement-2 : $$a = {1 \over 2}$$ and $$b = {-1 \over 4}$$

A
Statement - 1 is false, Statement - 2 is true.
B
Statement - 1 is true , Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
C
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
D
Statement - 1 is true, Statement - 2 is false.
4
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
An ellipse is drawn by taking a diameter of thec circle $${\left( {x - 1} \right)^2} + {y^2} = 1$$ as its semi-minor axis and a diameter of the circle $${x^2} + {\left( {y - 2} \right)^2} = 4$$ is semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :
A
$$4{x^2} + {y^2} = 4$$
B
$${x^2} + 4{y^2} = 8$$
C
$$4{x^2} + {y^2} = 8$$
D
$${x^2} + 4{y^2} = 16$$
JEE Main Papers
2023
2021
EXAM MAP