1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$u = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } $$

then the difference between the maximum and minimum values of $${u^2}$$ is given by :
A
$${\left( {a - b} \right)^2}$$
B
$$2\sqrt {{a^2} + {b^2}} $$
C
$${\left( {a + b} \right)^2}$$
D
$$2\left( {{a^2} + {b^2}} \right)$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
A line makes the same angle $$\theta $$, with each of the $$x$$ and $$z$$ axis.

If the angle $$\beta \,$$, which it makes with y-axis, is such that $$\,{\sin ^2}\beta = 3{\sin ^2}\theta ,$$ then $${\cos ^2}\theta $$ equals :
A
$${2 \over 5}$$
B
$${1 \over 5}$$
C
$${3 \over 5}$$
D
$${2 \over 3}$$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let z and w be complex numbers such that $$\overline z + i\overline w = 0$$ and arg zw = $$\pi $$. Then arg z equals :
A
$${{5\pi } \over 4}$$
B
$${{\pi } \over 2}$$
C
$${{3\pi } \over 4}$$
D
$${{\pi } \over 4}$$
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$z = x - iy$$ and $${z^{{1 \over 3}}} = p + iq$$, then

$${{\left( {{x \over p} + {y \over q}} \right)} \over {\left( {{p^2} + {q^2}} \right)}}$$ is equal to :
A
- 2
B
- 1
C
2
D
1
JEE Main Papers
2023
2021
EXAM MAP