1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$A\left( {2, - 3} \right)$$ and $$B\left( {-2, 1} \right)$$ be vertices of a triangle $$ABC$$. If the centroid of this triangle moves on the line $$2x + 3y = 1$$, then the locus of the vertex $$C$$ is the line :
A
$$3x - 2y = 3$$
B
$$2x - 3y = 7$$
C
$$3x + 2y = 5$$
D
$$2x + 3y = 9$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If the lines 2x + 3y + 1 + 0 and 3x - y - 4 = 0 lie along diameter of a circle of circumference $$10\,\pi $$, then the equation of the circle is :
A
$${x^2}\, + \,{y^2} + \,2x\, - \,2y - \,23\,\, = 0$$
B
$${x^2}\, + \,{y^2} - \,2x\, - \,2y - \,23\,\, = 0$$
C
$${x^2}\, + \,{y^2} + \,2x\, + \,2y - \,23\,\, = 0$$
D
$${x^2}\, + \,{y^2} - \,2x\, + \,2y - \,23\,\, = 0$$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If a circle passes through the point (a, b) and cuts the circle $${x^2}\, + \,{y^2} = 4$$ orthogonally, then the locus of its centre is :
A
$$2ax\, - 2by\, - ({a^2}\, + \,{b^2} + 4) = 0$$
B
$$2ax\, + 2by\, - ({a^2}\, + \,{b^2} + 4) = 0$$
C
$$2ax\, - 2by\, + ({a^2}\, + \,{b^2} + 4) = 0$$
D
$$2ax\, + 2by\, + ({a^2}\, + \,{b^2} + 4) = 0$$
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Intercept on the line y = x by the circle $${x^2}\, + \,{y^2} - 2x = 0$$ is AB. Equation of the circle on AB as a diameter is :
A
$$\,{x^2}\, + \,{y^2} + \,x\, - \,y\,\, = 0$$
B
$$\,{x^2}\, + \,{y^2} - \,x\, + \,y\,\, = 0$$
C
$$\,{x^2}\, + \,{y^2} + \,x\, + \,y\,\, = 0$$
D
$$\,{x^2}\, + \,{y^2} - \,x\, - \,y\,\, = 0$$
JEE Main Papers
2023
2021
EXAM MAP