1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Intercept on the line y = x by the circle $${x^2}\, + \,{y^2} - 2x = 0$$ is AB. Equation of the circle on AB as a diameter is :
A
$$\,{x^2}\, + \,{y^2} + \,x\, - \,y\,\, = 0$$
B
$$\,{x^2}\, + \,{y^2} - \,x\, + \,y\,\, = 0$$
C
$$\,{x^2}\, + \,{y^2} + \,x\, + \,y\,\, = 0$$
D
$$\,{x^2}\, + \,{y^2} - \,x\, - \,y\,\, = 0$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$a \ne 0$$ and the line $$2bx+3cy+4d=0$$ passes through the points of intersection of the parabolas $${y^2} = 4ax$$ and $${x^2} = 4ay$$, then :
A
$${d^2} + {\left( {3b - 2c} \right)^2} = 0$$
B
$${d^2} + {\left( {3b + 2c} \right)^2} = 0$$
C
$${d^2} + {\left( {2b - 3c} \right)^2} = 0$$
D
$${d^2} + {\left( {2b + 3c} \right)^2} = 0$$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be non-zero vectors such that $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a \,\,.$$ If $$\theta $$ is the acute angle between the vectors $${\overrightarrow b }$$ and $${\overrightarrow c },$$ then $$sin\theta $$ equals :
A
$${{2\sqrt 2 } \over 3}$$
B
$${{\sqrt 2 } \over 3}$$
C
$${2 \over 3}$$
D
$${1 \over 3}$$
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
A line with direction cosines proportional to $$2,1,2$$ meets each of the lines $$x=y+a=z$$ and $$x+a=2y=2z$$ . The co-ordinates of each of the points of intersection are given by :
A
$$\left( {2a,3a,3a} \right),\left( {2a,a,a} \right)$$
B
$$\left( {3a,2a,3a} \right),\left( {a,a,a} \right)$$
C
$$\left( {3a,2a,3a} \right),\left( {a,a,2a} \right)$$
D
$$\left( {3a,3a,3a} \right),\left( {a,a,a} \right)$$
JEE Main Papers
2023
2021
EXAM MAP