1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be non-zero vectors such that $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a \,\,.$$ If $$\theta $$ is the acute angle between the vectors $${\overrightarrow b }$$ and $${\overrightarrow c },$$ then $$sin\theta $$ equals :
A
$${{2\sqrt 2 } \over 3}$$
B
$${{\sqrt 2 } \over 3}$$
C
$${2 \over 3}$$
D
$${1 \over 3}$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
A line with direction cosines proportional to $$2,1,2$$ meets each of the lines $$x=y+a=z$$ and $$x+a=2y=2z$$ . The co-ordinates of each of the points of intersection are given by :
A
$$\left( {2a,3a,3a} \right),\left( {2a,a,a} \right)$$
B
$$\left( {3a,2a,3a} \right),\left( {a,a,a} \right)$$
C
$$\left( {3a,2a,3a} \right),\left( {a,a,2a} \right)$$
D
$$\left( {3a,3a,3a} \right),\left( {a,a,a} \right)$$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If the straight lines
$$x=1+s,y=-3$$$$ - \lambda s,$$ $$z = 1 + \lambda s$$ and $$x = {t \over 2},y = 1 + t,z = 2 - t,$$ with parameters $$s$$ and $$t$$ respectively, are co-planar, then $$\lambda $$ equals :
A
$$0$$
B
$$-1$$
C
$$ - {1 \over 2}$$
D
$$-2$$
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3,4\}$. The relation $R$ is :
A
a function
B
transitive
C
not symmetric
D
reflexive
JEE Main Papers
2023
2021
EXAM MAP