1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w $$ be such that $$\left| {\overrightarrow u } \right| = 1,\,\,\,\left| {\overrightarrow v } \right|2,\,\,\,\left| {\overrightarrow w } \right|3.$$ If the projection $${\overrightarrow v }$$ along $${\overrightarrow u }$$ is equal to that of $${\overrightarrow w }$$ along $${\overrightarrow u }$$ and $${\overrightarrow v },$$ $${\overrightarrow w }$$ are perpendicular to each other then $$\left| {\overrightarrow u - \overrightarrow v + \overrightarrow w } \right|$$ equals :
A
$$14$$
B
$${\sqrt {7} }$$
C
$${\sqrt {14} }$$
D
$$2$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of these are collinear. If the vector $$\overrightarrow a + 2\overrightarrow b $$ is collinear with $$\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c $$ is collinear with $$\overrightarrow a $$ ($$\lambda $$ being some non-zero scalar) then $$\overrightarrow a + 2\overrightarrow b + 6\overrightarrow c $$ equals to :
A
$\overrightarrow{0}$
B
$$\lambda \overrightarrow b $$
C
$$\lambda \overrightarrow c $$
D
$$\lambda \overrightarrow a $$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $${{T_r}}$$ be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers m, n, $$m \ne n,\,\,{T_m} = {1 \over n}\,\,and\,{T_n} = {1 \over m},\,$$ then a - d equals
A
$${1 \over m} + {1 \over n}$$
B
1
C
$${1 \over {m\,n}}$$
D
0
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
If $$u = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } $$

then the difference between the maximum and minimum values of $${u^2}$$ is given by :
A
$${\left( {a - b} \right)^2}$$
B
$$2\sqrt {{a^2} + {b^2}} $$
C
$${\left( {a + b} \right)^2}$$
D
$$2\left( {{a^2} + {b^2}} \right)$$
JEE Main Papers
2023
2021
EXAM MAP